Antioxidant support to ameliorate the oxaliplatin-dependent microglial alteration: Morphological and molecular study

1Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Oxaliplatin is a third-generation chemotherapy drug mainly used for colorectal cancer treatment. However, it is also known to trigger neuropathy whose underlying neurobiological mechanisms are still under investigation and currently available treatments show limited efficacy. It is now established that neurons are not the only cell type involved in chronic pain and that glial cells, mainly microglia and astrocytes, are implicated in the initia-tion and maintenance of neuropathy. Among all the pathogenetic factors involved in neuropathic pain, an oxali-platin-dependent oxidative stress plays a predominant role. In our study, the antioxidant properties of magnesium (Mg), manganese (Mn) and zinc (Zn) salts were evaluated in order to counteract microglial activation induced by oxaliplatin. The antioxidant efficacy of these metals was evaluated by means of molecular and morphological assays on the BV-2 microglial cell line. Our data clearly show that Mg, Mn and Zn salts are able to prevent oxaliplatin-dependent microglial alterations by reducing both oxidative and endoplasmic reticulum stress.

Cite

CITATION STYLE

APA

Branca, J. J. V., Carrino, D., Paternostro, F., Gulisano, M., Becatti, M., Di Cesare Mannelli, L., & Pacini, A. (2021). Antioxidant support to ameliorate the oxaliplatin-dependent microglial alteration: Morphological and molecular study. European Journal of Histochemistry, 65(S1). https://doi.org/10.4081/ejh.2021.3285

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free