Mitochondrial Ca2+ dynamics are involved in the regulation of multifarious cellular processes, including intracellular Ca2+ signalling, cell metabolism and cell death. Use of mitochondria-targeted genetically encoded Ca2+ indicators has revealed intercellular and subcellular heterogeneity of mitochondrial Ca2+ dynamics, which are assumed to be determined by distinct thresholds of Ca2+ increases at each subcellular mitochondrial domain. The balance between Ca2+ influx through the mitochondrial calcium uniporter and extrusion by cation exchangers across the inner mitochondrial membrane may define the threshold; however, the precise mechanisms remain to be further explored. We here report the new red fluorescent genetically encoded Ca2+ indicators, R-CEPIA3mt and R-CEPIA4mt, which are targeted to mitochondria and their Ca2+ affinities are engineered to match the intramitochondrial Ca2+ concentrations. They enable visualization of mitochondrial Ca2+ dynamics with high spatiotemporal resolution in parallel with the use of green fluorescent probes and optogenetic tools. Thus, R-CEPIA3mt and R-CEPIA4mt are expected to be a useful tool for elucidating the mechanisms of the complex mitochondrial Ca2+ dynamics and their functions.
CITATION STYLE
Kanemaru, K., Suzuki, J., Taiko, I., & Iino, M. (2020). Red fluorescent CEPIA indicators for visualization of Ca2+ dynamics in mitochondria. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-59707-8
Mendeley helps you to discover research relevant for your work.