Evidence for methionine-sulfoxide-reductase gene transfer from Alphaproteobacteria to the transcriptionally active (macro)nucleus of the ciliate, Euplotes raikovi

2Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Deleterious phenomena of protein oxidation affect every aerobic organism and methionine residues are their elective targets. The reduction of methionine sulfoxides back to methionines is catalyzed by methionine-sulfoxide reductases (Msrs), enzymes which are particularly active in microorganisms because of their unique nature of individual cells directly exposed to environmental oxidation. Results: From the transcriptionally active somatic genome of a common free-living marine protist ciliate, Euplotes raikovi, we cloned multiple gene isoforms encoding Msr of type A (MsrA) committed to repair methionine-S-sulfoxides. One of these isoforms, in addition to including a MsrA-specific nucleotide sequence, included also a sequence specific for a Msr of type B (MsrB) committed to repair methionine-R-sulfoxides. Analyzed for its structural relationships with MsrA and MsrB coding sequences of other organisms, the coding region of this gene (named msrAB) showed much more significant relationships with Msr gene coding sequences of Rhodobacterales and Rhizobiales (Alphaproteobacteria), than of other eukaryotic organisms. Conclusions: Based on the fact that the msrAB gene is delimited by Euplotes-specific regulatory 5′and 3′regions and telomeric C4A4/G4T4 repeats, it was concluded that E. raikovi inherited the coding region of this gene through a phenomenon of horizontal gene transfer from species of Alphaproteobacteria with which it coexists in nature and on which it likely feeds.

Cite

CITATION STYLE

APA

Dobri, N., Candelori, A., Ricci, F., Luporini, P., & Vallesi, A. (2014). Evidence for methionine-sulfoxide-reductase gene transfer from Alphaproteobacteria to the transcriptionally active (macro)nucleus of the ciliate, Euplotes raikovi. BMC Microbiology, 14(1). https://doi.org/10.1186/s12866-014-0288-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free