Defects in activation and transport of fatty acids

50Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The oxidation of long-chain fatty acids in mitochondria plays an important role in energy production, especially in skeletal muscle, heart and liver. Long-chain fatty acids, activated to their CoA esters in the cytosol, are shuttled across the barrier of the inner mitochondrial membrane by the carnitine cycle. This pathway includes four steps, mediated by a plasma membrane carnitine transporter, two carnitine palmitoyltransferases (CPT I and CPT II) and a carnitine-acylcarnitine translocase. Defects in activation and uptake of fatty acids affect these four steps: CPT II deficiency leads to either exercise-induced rhabdomyolysis in adults or hepatocardiomuscular symptoms in neonates and children. The three other disorders of the carnitine cycle have an early onset. Hepatic CPT I deficiency is characterized by recurrent episodes of Reye-like syndrome, whereas severe muscular and cardiac signs are associated with episodes of fasting hypoglycaemia in defects of carnitine transport and translocase. Convenient metabolic investigations for reaching the diagnosis of carnitine cycle disorders are determination of plasma free and total carnitine concentrations, determination of plasma acylcarnitine profile by tandem mass spectrometry and in vitro fatty acid oxidation studies, particularly in fresh lymphocytes. Application of the tools of molecular biology has greatly aided the understanding of the carnitine palmitoyltransferase enzyme system and confirmed the existence of different related genetic diseases. Mutation analysis of CPT II defects has given some clues for correlation of genotype and phenotype. The first molecular analyses of hepatic CPT I and translocase deficiencies were recently reported.

Cite

CITATION STYLE

APA

Brivet, M., Boutron, A., Slama, A., Costa, C., Thuillier, L., Demaugre, F., … Bonnefont, J. P. (1999). Defects in activation and transport of fatty acids. In Journal of Inherited Metabolic Disease (Vol. 22, pp. 428–441). https://doi.org/10.1023/A:1005552106301

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free