Construction and Simulation of Athlete's Wrong Action Recognition Model in Sports Training Based on Embedded Wireless Communication and Computer Vision

5Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Embedded networking has a broad prospect. Because of the Internet and the rapid development of PC skills, computer vision technology has a wide range of applications in many fields, especially the importance of identifying wrong movements in sports training. To study the computer vision technology to identify the wrong movement of athletes in sports training, in this paper, a hidden Markov model based on computer vision technology is constructed to collect video and identify the landing and take-off movements and badminton serving movements of a team of athletes under the condition of sports training, Bayesian classification algorithm to analyze the acquired sports training action data, obtain the error frequency, and the number of errors of the landing jump action, and the three characteristic data of the displacement, velocity, and acceleration of the body's center of gravity of the athlete in the two cases of successful and incorrect badminton serve actions and compared and analyzed the accuracy of the action recognition method used in this article, the action recognition method based on deep learning and the action recognition method based on EMG signal under 30 experiments. The training process of deep learning is specifically split into two stages: 1st, a monolayer neuron is built layer by layer so that the network is trained one layer at a time; when all layers are fully trained, a tuning is performed using a wake-sleep operation. The final result shows that the frequency of the wrong actions of the athletes on the landing jump is concentrated in the knee valgus, the total frequency of error has reached 58%, and the frequency of personal error has reached 45%; the problem of the landing distance of the two feet of the team athletes also appeared more frequently, the total frequency reached 50%, and the personal frequency reached 30%. Therefore, athletes should pay more attention to the problems of knee valgus and the distance between feet when performing landing jumps; the difference in the displacement, speed, and acceleration of the body's center of gravity during the badminton serve will affect the error of the action. And the action recognition method used in this study has certain advantages compared with the other two action recognition methods, and the accuracy of action recognition is higher.

Cite

CITATION STYLE

APA

Gao, N. (2021). Construction and Simulation of Athlete’s Wrong Action Recognition Model in Sports Training Based on Embedded Wireless Communication and Computer Vision. Wireless Communications and Mobile Computing, 2021. https://doi.org/10.1155/2021/7826845

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free