Population imaging discrepancies between a genetically-encoded calcium indicator (GECI) versus a genetically-encoded voltage indicator (GEVI)

18Citations
Citations of this article
86Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Genetically-encoded calcium indicators (GECIs) are essential for studying brain function, while voltage indicators (GEVIs) are slowly permeating neuroscience. Fundamentally, GECI and GEVI measure different things, but both are advertised as reporters of “neuronal activity”. We quantified the similarities and differences between calcium and voltage imaging modalities, in the context of population activity (without single-cell resolution) in brain slices. GECI optical signals showed 8–20 times better SNR than GEVI signals, but GECI signals attenuated more with distance from the stimulation site. We show the exact temporal discrepancy between calcium and voltage imaging modalities, and discuss the misleading aspects of GECI imaging. For example, population voltage signals already repolarized to the baseline (~ disappeared), while the GECI signals were still near maximum. The region-to-region propagation latencies, easily captured by GEVI imaging, are blurred in GECI imaging. Temporal summation of GECI signals is highly exaggerated, causing uniform voltage events produced by neuronal populations to appear with highly variable amplitudes in GECI population traces. Relative signal amplitudes in GECI recordings are thus misleading. In simultaneous recordings from multiple sites, the compound EPSP signals in cortical neuropil (population signals) are less distorted by GEVIs than by GECIs.

Cite

CITATION STYLE

APA

Zhu, M. H., Jang, J., Milosevic, M. M., & Antic, S. D. (2021). Population imaging discrepancies between a genetically-encoded calcium indicator (GECI) versus a genetically-encoded voltage indicator (GEVI). Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-84651-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free