BACKGROUND AND PURPOSE: Our aim was to assess dynamic half-Fourier acquired single-shot turbo spin-echo (HASTE) MR imaging of the temporomandibular joint (TMJ) using parallel imaging, in comparison with static proton density (Pd) imaging. MATERIALS AND METHODS: Thirty-four TMJs from 17 subjects (7 volunteers, 10 patients) were imaged in a multichannel head coil on a 1.5T magnet by using a 35-second dynamic sagittal HASTE acquisition (TR/TE, 1180/65 msec; matrix, 128 x 128; section thickness, 7 mm; 30 images) and sagittal oblique Pd in closed- and open-mouthed positions (TR/TE, 1800/12 msec; matrix, 256 x 256; section thickness, 2 mm; 15 sections). Images were reviewed by 3 readers and rated for confidence of disk position, presence of motion artifact, range of motion, and presence of disk displacement on a 5-point scale. Consensus review of cases was also performed to assess disk dislocation and limited range of motion. RESULTS: More static examinations were rated as having motion artifact (19.6% versus 6.9%, P = .016), limited range of motion (30.4% versus 17.7%, P = .016), and disk dislocations (31.4% versus 22.6%, P = .071). Confidence ratings were higher on dynamic examinations (4.11 versus 3.74, P = .018). Chi-squared tests demonstrated no significant difference in consensus reviews of the 2 examination types. CONCLUSION: Dynamic HASTE TMJ MR imaging is a time-efficient adjunct to standard MR imaging protocols, producing fewer motion artifacts, additional range of motion information, and a dynamic assessment of disk position, when compared with static imaging. Further study is needed to evaluate the role of this sequence in diagnosing disk displacement.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Wang, E. Y., Mulholland, T. P., Pramanik, B. K., Nusbaum, A. O., Babb, J., Pavone, A. G., & Fleisher, K. E. (2007). Dynamic sagittal half-Fourier acquired single-shot turbo spin-echo MR imaging of the temporomandibular joint: Initial experience and comparison with sagittal oblique proton-attenuation images. American Journal of Neuroradiology, 28(6), 1126–1132. https://doi.org/10.3174/ajnr.A0487