Wetlands have been proposed as a sink for pollutants such as heavy metals. Wetland plants play a significant role in the phytoremediation of heavy metals. Here, we isolated and characterized three novel nickel (Ni)-resistant endophytic bacteria (NiEB) from the wetland plant Tamarix chinensis. The NiEB were identified as Stenotrophomonas sp. S20, Pseudomonas sp. P21 and Sphingobium sp. S42. All isolates tolerated 50 mg L-1Ni, with isolates S20 and P21 being more tolerant to Ni at up to 400 mg L-1. Moreover, isolate S42 removed 33.7% of nickel sulfate from the water by forming white precipitates. The three isolates exhibited different plant growth-promoting (PGP) traits related to the production of indole acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. Phytotoxicity studies revealed that the growth of the wetland plants in a high Ni concentration (200 mg L-1) recovered after co-incubation with isolate S42. Overall, this study presents the first report of NiEB isolation from wetland plants and provides novel insights into the diverse functions of endophytic bacteria in a plant host with the potential to improve Ni phytoremediation.
CITATION STYLE
Chen, J., Li, N., Han, S., Sun, Y., Wang, L., Qu, Z., … Zhao, G. (2020). Characterization and bioremediation potential of nickel-resistant endophytic bacteria isolated from the wetland plant Tamarix chinensis. FEMS Microbiology Letters, 367(12). https://doi.org/10.1093/femsle/fnaa098
Mendeley helps you to discover research relevant for your work.