Performance of two different quantum annealing correction codes

27Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Quantum annealing is a promising approach for solving optimization problems, but like all other quantum information processing methods, it requires error correction to ensure scalability. In this work, we experimentally compare two quantum annealing correction (QAC) codes in the setting of antiferromagnetic chains, using two different quantum annealing processors. The lower-temperature processor gives rise to higher success probabilities. The two codes differ in a number of interesting and important ways, but both require four physical qubits per encoded qubit. We find significant performance differences, which we explain in terms of the effective energy boost provided by the respective redundantly encoded logical operators of the two codes. The code with the higher energy boost results in improved performance, at the expense of a lower-degree encoded graph. Therefore, we find that there exists an important trade-off between encoded connectivity and performance for quantum annealing correction codes.

Cite

CITATION STYLE

APA

Mishra, A., Albash, T., & Lidar, D. A. (2016). Performance of two different quantum annealing correction codes. Quantum Information Processing, 15(2), 609–636. https://doi.org/10.1007/s11128-015-1201-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free