ITRAQ-based quantitative proteomic and physiological analysis of the response to N deficiency and the compensation effect in rice

12Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The crop growth compensation effect is a naturally biological phenomenon, and nitrogen (N) is essential for crop growth and development, especially for yield formation. Little is known about the molecular mechanism of N deficiency and N compensation in rice. Thus, the N-sensitive stage of rice was selected to study N deficiency at the tillering stage and N compensation at the young panicle differentiation stage. In this study, a proteome analysis was performed to analyze leaf differentially expressed proteins (DEPs), and to investigate the leaf physiological characteristics and yield under N deficiency and after N compensation. Results: The yield per plant presented an equivalent compensatory effect. The net photosynthetic rate, optimal/maximal quantum yield of photosystem II (Fv/Fm), soil and plant analyzer development (SPAD) value, and glutamic pyruvic transaminase (GPT) activity of T1 (N deficiency at the tillering stage, and N compensation at the young panicle differentiation stage) were lower than those of CK (N at different stages of growth by constant distribution) under N deficiency. However, after N compensation, the net photosynthetic rate, Fv/Fm, SPAD value and GPT activity were increased. Using an iTRAQ-based quantitative approach, a total of 1665 credible proteins were identified in the three 4-plex iTRAQ experiments. Bioinformatics analysis indicated that DEPs were enriched in photosynthesis, photosynthesis-antenna proteins, carbon metabolism and carbon fixation in the photosynthetic organism pathways. Moreover, the photosynthesis-responsive proteins of chlorophyll a-b binding protein, ribulose bisphosphate carboxylase small chain and phosphoglycerate kinase were significantly downregulated under N deficiency. After N compensation, chlorophyll a-b binding protein, NADH dehydrogenase subunit 5, NADH dehydrogenase subunit 7, and peroxidase proteins were significantly upregulated in rice leaves. Conclusion: Through physiological and quantitative proteomic analysis, we concluded that a variety of metabolic pathway changes was induced by N deficiency and N compensation. GO and KEGG enrichment analysis revealed that DEPs were significantly associated with photosynthesis pathway-, energy metabolism pathway- and stress resistance-related proteins. The DEPs play an important role in the regulation of N deficiency and the compensation effect in rice.

Cite

CITATION STYLE

APA

Xiong, Q., Zhong, L., Shen, T., Cao, C., He, H., & Chen, X. (2019). ITRAQ-based quantitative proteomic and physiological analysis of the response to N deficiency and the compensation effect in rice. BMC Genomics, 20(1). https://doi.org/10.1186/s12864-019-6031-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free