Stress corrosion cracking (SCC) is the formation and growth of crack through materials subjected to tensile stress and a specific corrosive medium. It can lead to unexpected sudden failure of normally ductile metals. Metal-environment combinations susceptible to cracking are specific. This means that all environments do not cause SCC on all of the alloys. Additionally, the environments that cause this kind of cracking have little corrosion effect on the alloy in normal conditions. In certain states, unwanted environmental and metallurgical changes have occurred and provide the metal-environment combination sensitive to SCC. The SCC sites on the metal surfaces may not be visible by visual inspection, while metal parts are being filled with microscopic cracks. These invisible cracks progress rapidly and lead the component and structures to catastrophic failures. In this chapter, the incidence of SCC on important industrial alloys from the chemical, metallurgical, and mechanical point of view is discussed.
CITATION STYLE
Khalifeh, A. (2019). Stress Corrosion Cracking Damages. In Failure Analysis. IntechOpen. https://doi.org/10.5772/intechopen.80826
Mendeley helps you to discover research relevant for your work.