METAnnotatorX2: a Comprehensive Tool for Deep and Shallow Metagenomic Data Set Analyses

  • Milani C
  • Lugli G
  • Fontana F
  • et al.
47Citations
Citations of this article
79Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We developed a novel tool, i.e., METAnnotatorX2, that includes a number of new advanced features for analysis of deep and shallow metagenomic data sets and is accompanied by (regularly updated) customized databases for archaea, bacteria, fungi, protists, and viruses. Both software and databases were developed so as to maximize sensitivity and specificity while including support for shallow metagenomic data sets. The use of bioinformatic tools for read-based taxonomic and functional analyses of metagenomic data sets, including their assembly and management, is rather fragmentary due to the absence of an accepted gold standard. Moreover, most currently available software tools need input of millions of reads and rely on approximations in data analysis in order to reduce computing times. These issues result in suboptimal results in terms of accuracy, sensitivity, and specificity when used either for the reconstruction of taxonomic or functional profiles through read analysis or analysis of genomes reconstructed by metagenomic assembly. Moreover, the recent introduction of novel DNA sequencing technologies that generate long reads, such as Nanopore and PacBio, represent a valuable data resource that still suffers from a lack of dedicated tools to perform integrated hybrid analysis alongside short read data. In order to overcome these limitations, here we describe a comprehensive bioinformatic platform, METAnnotatorX2, aimed at providing an optimized user-friendly resource which maximizes output quality, while also allowing user-specific adaptation of the pipeline and straightforward integrated analysis of both short and long read data. To further improve performance quality and accuracy of taxonomic assignment of reads and contigs, custom preprocessed and taxonomically revised genomic databases for viruses, prokaryotes, and various eukaryotes were developed. The performance of METAnnotatorX2 was tested by analysis of artificial data sets encompassing viral, archaeal, bacterial, and eukaryotic (fungal) sequence reads that simulate different biological matrices. Moreover, real biological samples were employed to validate in silico results. IMPORTANCE We developed a novel tool, i.e., METAnnotatorX2, that includes a number of new advanced features for analysis of deep and shallow metagenomic data sets and is accompanied by (regularly updated) customized databases for archaea, bacteria, fungi, protists, and viruses. Both software and databases were developed so as to maximize sensitivity and specificity while including support for shallow metagenomic data sets. Through extensive tests performed on Illumina and Nanopore artificial data sets, we demonstrated the high performance of the software to not only extract taxonomic and functional information from sequence reads but also to assemble and process genomes from metagenomic data. The robustness of these functionalities was validated using “real-life” data sets obtained from Illumina and Nanopore sequencing of biological samples. Furthermore, the performance of METAnnotatorX2 was compared to other available software tools for analysis of shotgun metagenomics data.

Cite

CITATION STYLE

APA

Milani, C., Lugli, G. A., Fontana, F., Mancabelli, L., Alessandri, G., Longhi, G., … Ventura, M. (2021). METAnnotatorX2: a Comprehensive Tool for Deep and Shallow Metagenomic Data Set Analyses. MSystems, 6(3). https://doi.org/10.1128/msystems.00583-21

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free