Docetaxel Resistance in Castration-Resistant Prostate Cancer: Transcriptomic Determinants and the Effect of Inhibiting Wnt/β-Catenin Signaling by XAV939

9Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Castration-resistant prostate cancer (CRPC) is a common form of prostate cancer in which docetaxel-based chemotherapy is used as the first line. The present study is devoted to the analysis of transcriptome profiles of tumor cells in the development of resistance to docetaxel as well as to the assessment of the combined effect with the XAV939 tankyrase inhibitor on maintaining the sensitivity of tumor cells to chemotherapy. RNA-Seq was performed for experimental PC3 cell lines as well as for plasma exosome samples from patients with CRPC. We have identified key biological processes and identified a signature based on the expression of 17 mRNA isoforms associated with the development of docetaxel resistance in PC3 cells. Transcripts were found in exosome samples, the increased expression of which was associated with the onset of progression of CRPC during therapy. The suppression of pathways associated with the participation of cellular microtubules has also been shown when cells are treated with docetaxel in the presence of XAV939. These results highlight the importance of further research into XAV939 as a therapeutic agent in the treatment of CRPC; moreover, we have proposed a number of mRNA isoforms with high predictive potential, which can be considered as promising markers of response to docetaxel.

Cite

CITATION STYLE

APA

Pudova, E., Kobelyatskaya, A., Katunina, I., Snezhkina, A., Nyushko, K., Fedorova, M., … Kudryavtseva, A. (2022). Docetaxel Resistance in Castration-Resistant Prostate Cancer: Transcriptomic Determinants and the Effect of Inhibiting Wnt/β-Catenin Signaling by XAV939. International Journal of Molecular Sciences, 23(21). https://doi.org/10.3390/ijms232112837

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free