A spatiotemporal profile of in vivo cerebral blood flow changes following intranasal oxytocin in humans

137Citations
Citations of this article
247Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background Animal and human studies highlight the role of oxytocin in social cognition and behavior and the potential of intranasal oxytocin (IN-OT) to treat social impairment in individuals with neuropsychiatric disorders such as autism. However, extensive efforts to evaluate the central actions and therapeutic efficacy of IN-OT may be marred by the absence of data regarding its temporal dynamics and sites of action in the living human brain. Methods In a placebo-controlled study, we used arterial spin labeling to measure IN-OT-induced changes in resting regional cerebral blood flow (rCBF) in 32 healthy men. Volunteers were blinded regarding the nature of the compound they received. The rCBF data were acquired 15 min before and up to 78 min after onset of treatment onset (40 IU of IN-OT or placebo). The data were analyzed using mass univariate and multivariate pattern recognition techniques. Results We obtained robust evidence delineating an oxytocinergic network comprising regions expected to express oxytocin receptors, based on histologic evidence, and including core regions of the brain circuitry underpinning social cognition and emotion processing. Pattern recognition on rCBF maps indicated that IN-OT-induced changes were sustained over the entire posttreatment observation interval (25-78 min) and consistent with a pharmacodynamic profile showing a peak response at 39-51 min. Conclusions Our study provides the first visualization and quantification of IN-OT-induced changes in rCBF in the living human brain unaffected by cognitive, affective, or social manipulations. Our findings can inform theoretical and mechanistic models regarding IN-OT effects on typical and atypical social behavior and guide future experiments (e.g., regarding the timing of experimental manipulations).

Cite

CITATION STYLE

APA

Paloyelis, Y., Doyle, O. M., Zelaya, F. O., Maltezos, S., Williams, S. C., Fotopoulou, A., & Howard, M. A. (2016). A spatiotemporal profile of in vivo cerebral blood flow changes following intranasal oxytocin in humans. Biological Psychiatry, 79(8), 693–705. https://doi.org/10.1016/j.biopsych.2014.10.005

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free