SELOVS: Brain MRSI localization based on highly selective T1- and B1-insensitive outer-volume suppression at 3T

38Citations
Citations of this article
56Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In vivo, high-field MR spectroscopic imaging (MRSI) profits from signal-to-noise ratio (SNR) gain and increased spectral resolution. However, bandwidth limitations of slice-selective excitation and refocusing pulses lead to strong chemical-shift displacement at high field strength when using conventional MRSI localization based on PRESS. Consequential metabolic information, particularly of border regions such as cortical brain tissue, is distorted. In addition, lipid contamination remains a major confound. To address these problems it is proposed to abandon PRESS selection and rely on a novel scheme of highly selective T1- and B1-insensitive outer-volume suppression in combination with slice-selective spin-echo acquisition for brain MRSI. Multiple cycles of overlapping suppression slabs are applied with flip angles optimized to account for tissue-dependent T 1 relaxation times and band crossings. Broadband frequency modulated saturation pulses with polynomial phase-response are utilized in order to minimize chemical-shift displacement. Efficacy of the outer-volume suppression sequence was simulated and evaluated in vitro and in vivo. Brain MRSI localization at 3T was significantly improved and reliable suppression of short-range lipid contamination enabled, leading to substantial enhancement of spectral quality, particularly in cortical tissue. Hence, the new method holds potential to expand the applicability of high-field MRSI to the entire brain. © 2007 Wiley-Liss, Inc.

Cite

CITATION STYLE

APA

Henning, A., Schär, M., Schulte, R. F., Wilm, B., Pruessmann, K. P., & Boesiger, P. (2008). SELOVS: Brain MRSI localization based on highly selective T1- and B1-insensitive outer-volume suppression at 3T. Magnetic Resonance in Medicine, 59(1), 40–51. https://doi.org/10.1002/mrm.21374

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free