S and N double-doped high surface area biomass-derived carbons were obtained from marine biomass-derived ι-carrageenan. Adding carbon nanoparticles (CNPs), namely graphene oxide (GO) or carbon nanotubes (CNTs), in the early stage of the synthesis leads to a modified porous texture and surface chemistry. The porous textures were characterized by N2 (−196.15 °C) and CO2 (0 °C) isotherms. The best GO- and CNT-added carbons had an apparent surface area of 1780 m2/g and 1170 m2/g, respectively, compared to 1070 m2/g for the CNP-free matrix. Analysis of the Raman spectra revealed that CNT was more efficient in introducing new defects than GO. Based on XPS, the carbon samples contain 2–4.5 at% nitrogen and 1.1 at% sulfur. The Dubinin–Radushkevich (DR) and Henry models were used to assess the strength of the interactions between various gases and the surface. The N2/H2 and CO2/CH4 selectivities were estimated with ideal adsorbed solution theory (IAST). While the CNPs, particularly GO, had a remarkable influence on the porous texture and affected the surface chemistry, their influence on the separation selectivity of these gases was more modest.
CITATION STYLE
Andrade, S. K. S., Menyhárd, A., Klébert, S., Mohai, M., Nagy, B., & László, K. (2023). Effect of Carbon Nanoparticles on the Porous Texture of ι-Carrageenan-Based N-Doped Nanostructured Porous Carbons and Implications for Gas Phase Applications. C-Journal of Carbon Research, 9(3). https://doi.org/10.3390/c9030068
Mendeley helps you to discover research relevant for your work.