Radiomics Analysis Based on Automatic Image Segmentation of DCE-MRI for Predicting Triple-Negative and Nontriple-Negative Breast Cancer

27Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Purpose. To investigate whether quantitative radiomics features extracted from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) could be used to differentiate triple-negative breast cancer (TNBC) and nontriple-negative breast cancer (non-TNBC). Materials and Methods. This retrospective study included DCE-MRI images of 81 breast cancer patients (44 TNBC and 37 non-TNBC) from August 2018 to October 2019. The MR scans were achieved at a 1.5 T MR scanner. For each patient, the largest tumor mass was selected to analyze. Three-dimensional (3D) images of the regions of interest (ROIs) were automatically segmented on the third DCE phase by a deep learning segmentation model; then, the ROIs were checked and revised by 2 radiologists. DCE-MRI radiomics features were extracted from the 3D tumor volume. The patients were randomly divided into training (N=57) and test (N=24) cohorts. The machine learning classifier was built in the training dataset, and 5-fold cross-validation was performed on the training cohort to train and validate. The data of the test cohort were used to investigate the predictive power of the radiomics model in predicting TNBC and non-TNBC. The performance of the model was evaluated by the area under receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Results. The radiomics model based on 15 features got the best performance. The AUC achieved 0.741 for the cross-validation, and 0.867 for the independent testing cohort. Conclusion. The radiomics model based on automatic image segmentation of DCE-MRI can be used to distinguish TNBC and non-TNBC.

Cite

CITATION STYLE

APA

Ma, M., Gan, L., Jiang, Y., Qin, N., Li, C., Zhang, Y., & Wang, X. (2021). Radiomics Analysis Based on Automatic Image Segmentation of DCE-MRI for Predicting Triple-Negative and Nontriple-Negative Breast Cancer. Computational and Mathematical Methods in Medicine, 2021. https://doi.org/10.1155/2021/2140465

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free