Designing a microenvironment that drives autonomous stromal cell differentiation toward osteogenesis while recapitulating the complexity of bone tissue remains challenging. In the current study, bone-like microtissues are created using electrohydrodynamic atomization to form two distinct liquefied microcapsules (mCAPs): i) hydroxypyridinone (HOPO)-modified gelatin (GH mCAPs, 7.5% w/v), and ii) HOPO-modified gelatin and dopamine-modified gelatin (GH+GD mCAPs, 7.5%+1.5% w/v). The ability of HOPO to coordinate with iron ions at physiological pH allows the formation of a semipermeable micro-hydrogel shell. In turn, the dopamine affinity for calcium ions sets a bioactive milieu for bone-like microtissues. After 21 days post encapsulation, GH and GH+GD mCAPs potentiate autonomous osteogenic differentiation of mesenchymal stem cells accompanied by collagen type-I gene upregulation, increased alkaline phosphatase (ALP) expression, and formation of mineralized extracellular matrix. However, the GH+GD mCAPs show higher levels of osteogenic markers starting on day 14, translating into a more advanced and organized mineralized matrix. The GH+GD system also shows upregulation of the receptor activator of nuclear factor kappa-B ligand (RANK-L) gene, enabling the autonomous osteoclastic differentiation of monocytes. These catechol-based mCAPs offer a promising approach to designing multifunctional and autonomous bone-like microtissues to study in vitro bone-related processes at the cell-tissue interface, angiogenesis, and osteoclastogenesis.
CITATION STYLE
Pinho, A. R., Gomes, M. C., Costa, D. C. S., & Mano, J. F. (2024). Bioactive Self-Regulated Liquified Microcompartments to Bioengineer Bone-Like Microtissues. Small, 20(9). https://doi.org/10.1002/smll.202305029
Mendeley helps you to discover research relevant for your work.