A density functional theory study of Fe(II)/Fe(III) distribution in single layer green rust: a cluster approach

3Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Green rust (GR) is a potentially important compound for the reduction of heavy metal and organic pollutants in subsurface environment because of its high Fe(II) content, but many details of the actual reaction mechanism are lacking. The reductive capacity distribution within GR is a key to understand how and where the redox reaction occurs and computational chemistry can provide more details about the electronic properties of green rust. We constructed three sizes of cluster models of single layer GR (i.e., without interlayer molecules or ions) and calculated the charge distribution of these structures using density functional theory. We found that the Fe(II) and Fe(III) are distributed unevenly in the single layer GR. Within a certain range of Fe(II)/Fe(III) ratios, the outer iron atoms behave more like Fe(III) and the inner iron atoms behave more like Fe(II). These findings indicate that the interior of GR is more reductive than the outer parts and will provide new information to understand the GR redox interactions.

Cite

CITATION STYLE

APA

Sun, W., Tobler, D. J., & Andersson, M. P. (2021). A density functional theory study of Fe(II)/Fe(III) distribution in single layer green rust: a cluster approach. Geochemical Transactions, 22(1). https://doi.org/10.1186/s12932-021-00076-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free