Mutasynthesis of pyrichalasin H from Magnaporthe grisea NI980 yielded a series of unprecedented 4′-substituted cytochalasin analogues in titres as high as the wild-type system (≈60 mg L−1). Halogenated, O-alkyl, O-allyl and O-propargyl examples were formed, as well as a 4′-azido analogue. 4′-O-Propargyl and 4′-azido analogues reacted smoothly in Huisgen cycloaddition reactions, whereas p-Br and p-I compounds reacted in Pd-catalysed cross-coupling reactions. A series of examples of biotin-linked, dye-linked and dimeric cytochalasins was rapidly created. In vitro and in vivo bioassays of these compounds showed that the 4′-halogenated and azido derivatives retained their cytotoxicity and antifungal activities; but a unique 4′-amino analogue was inactive. Attachment of larger substituents attenuated the bioactivities. In vivo actin-binding studies with adherent mammalian cells showed that actin remains the likely intracellular target. Dye-linked compounds revealed visualisation of intracellular actin structures even in the absence of phalloidin, thus constituting a potential new class of actin-visualisation tools with filament-barbed end-binding specificity.
CITATION STYLE
Wang, C., Lambert, C., Hauser, M., Deuschmann, A., Zeilinger, C., Rottner, K., … Cox, R. J. (2020). Diversely Functionalised Cytochalasins through Mutasynthesis and Semi-Synthesis. Chemistry - A European Journal, 26(60), 13578–13583. https://doi.org/10.1002/chem.202002241
Mendeley helps you to discover research relevant for your work.