Image-based dynamic quantification of aboveground structure of sugar beet in field

34Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

Abstract

Sugar beet is one of the main crops for sugar production in the world. With the increasing demand for sugar, more desirable sugar beet genotypes need to be cultivated through plant breeding programs. Precise plant phenotyping in the field still remains challenge. In this study, structure from motion (SFM) approach was used to reconstruct a three-dimensional (3D) model for sugar beets from 20 genotypes at three growth stages in the field. An automatic data processing pipeline was developed to process point clouds of sugar beet including preprocessing, coordinates correction, filtering and segmentation of point cloud of individual plant. Phenotypic traits were also automatically extracted regarding plant height, maximum canopy area, convex hull volume, total leaf area and individual leaf length. Total leaf area and convex hull volume were adopted to explore the relationship with biomass. The results showed that high correlations between measured and estimated values with R2 > 0.8. Statistical analyses between biomass and extracted traits proved that both convex hull volume and total leaf area can predict biomass well. The proposed pipeline can estimate sugar beet traits precisely in the field and provide a basis for sugar beet breeding.

Cite

CITATION STYLE

APA

Xiao, S., Chai, H., Shao, K., Shen, M., Wang, Q., Wang, R., … Ma, Y. (2020). Image-based dynamic quantification of aboveground structure of sugar beet in field. Remote Sensing, 12(2). https://doi.org/10.3390/rs12020269

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free