Development of a bedside tool to predict the probability of drug-resistant pathogens among hospitalized adult patients with gram-negative infections

22Citations
Citations of this article
81Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: We developed a clinical bedside tool to simultaneously estimate the probabilities of third-generation cephalosporin-resistant Enterobacteriaceae (3GC-R), carbapenem-resistant Enterobacteriaceae (CRE), and multidrug-resistant Pseudomonas aeruginosa (MDRP) among hospitalized adult patients with Gram-negative infections. Methods: Data were obtained from a retrospective observational study of the Premier Hospital that included hospitalized adult patients with a complicated urinary tract infection (cUTI), complicated intra-abdominal infection (cIAI), hospital-acquired/ventilator-associated pneumonia (HAP/VAP), or bloodstream infection (BSI) due to Gram-negative bacteria between 2011 and 2015. Risk factors for 3GC-R, CRE, and MDRP were ascertained by multivariate logistic regression, and separate models were developed for patients with community-acquired versus hospital-acquired infections for each resistance phenotype (N = 6). Models were converted to a singular user-friendly interface to estimate the probabilities of a patient having an infection due to 3GC-R, CRE, or MDRP when ≥ 1 risk factor was present. Results: Overall, 124,068 patients contributed to the dataset. Percentages of patients admitted for cUTI, cIAI, HAP/VAP, and BSI were 61.6, 4.6, 16.5, and 26.4%, respectively (some patients contributed > 1 infection type). Resistant infection rates were 1.90% for CRE, 12.09% for 3GC-R, and 3.91% for MDRP. A greater percentage of the resistant infections were community-acquired relative to hospital-acquired (CRE, 1.30% vs 0.62% of 1.90%; 3GC-R, 9.27% vs 3.42% of 12.09%; MDRP, 2.39% vs 1.59% of 3.91%). The most important predictors of having an 3GC-R, CRE or MDRP infection were prior number of antibiotics; infection site; infection during the previous 3 months; and hospital prevalence of 3GC-R, CRE, or MDRP. To enable application of the six predictive multivariate logistic regression models to real-world clinical practice, we developed a user-friendly interface that estimates the risk of 3GC-R, CRE, and MDRP simultaneously in a given patient with a Gram-negative infection based on their risk (Additional file 1). Conclusions: We developed a clinical prediction tool to estimate the probabilities of 3GC-R, CRE, and MDRP among hospitalized adult patients with confirmed community- and hospital-acquired Gram-negative infections. Our predictive model has been implemented as a user-friendly bedside tool for use by clinicians/healthcare professionals to predict the probability of resistant infections in individual patients, to guide early appropriate therapy.

Cite

CITATION STYLE

APA

Lodise, T. P., Bonine, N. G., Ye, J. M., Folse, H. J., & Gillard, P. (2019). Development of a bedside tool to predict the probability of drug-resistant pathogens among hospitalized adult patients with gram-negative infections. BMC Infectious Diseases, 19(1). https://doi.org/10.1186/s12879-019-4363-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free