Influence of microarray experiments missing values on the stability of gene groups by hierarchical clustering

87Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Microarray technologies produced large amount of data. The hierarchical clustering is commonly used to identify clusters of co-expressed genes. However, microarray datasets often contain missing values (MVs) representing a major drawback for the use of the clustering methods. Usually the MVs are not treated, or replaced by zero or estimated by the k-Nearest Neighbor (kNN) approach. The topic of the paper is to study the stability of gene clusters, defined by various hierarchical clustering algorithms, of microarrays experiments including or not MVs. Results: In this study, we show that the MVs have important effects on the stability of the gene clusters. Moreover, the magnitude of the gene misallocations is depending on the aggregation algorithm. The most appropriate aggregation methods (e.g. complete-linkage and Ward) are highly sensitive to MVs, and surprisingly, for a very tiny proportion of MVs (e.g. 1%). In most of the case, the MVs must be replaced by expected values. The MVs replacement by the kNN approach clearly improves the identification of co-expressed gene clusters. Nevertheless, we observe that kNN approach is less suitable for the extreme values of gene expression. Conclusion: The presence of MVs (even at a low rate) is a major factor of gene cluster instability. In addition, the impact depends on the hierarchical clustering algorithm used. Some methods should be used carefully. Nevertheless, the kNN approach constitutes one efficient method for restoring the missing expression gene values, with a low error level. Our study highlights the need of statistical treatments in microarray data to avoid misinterpretation. © 2004 de Brevern et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

de Brevern, A. G., Hazout, S., & Malpertuy, A. (2004). Influence of microarray experiments missing values on the stability of gene groups by hierarchical clustering. BMC Bioinformatics, 5. https://doi.org/10.1186/1471-2105-5-114

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free