[NiFe]-hydrogenases catalyze the reversible conversion of molecular hydrogen into protons end electrons. This reaction takes place at a NiFe(CN)2(CO) cofactor located in the large subunit of the bipartite hydrogenase module. The corresponding apo-protein carries usually a C-terminal extension that is cleaved off by a specific endopeptidase as soon as the cofactor insertion has been accomplished by the maturation machinery. This process triggers complex formation with the small, electron-transferring subunit of the hydrogenase module, revealing catalytically active enzyme. The role of the C-terminal extension in cofactor insertion, however, remains elusive. We have addressed this problem by using genetic engineering to remove the entire C-terminal extension from the apo-form of the large subunit of the membrane-bound [NiFe]-hydrogenase (MBH) from Ralstonia eutropha. Unexpectedly, the MBH holoenzyme derived from this precleaved large subunit was targeted to the cytoplasmic membrane, conferred H2-dependent growth of the host strain, and the purified protein showed exactly the same catalytic activity as native MBH. The only difference was a reduced hydrogenase content in the cytoplasmic membrane. These results suggest that in the case of the R. eutropha MBH, the C-terminal extension is dispensable for cofactor insertion and seems to function only as a maturation facilitator.
CITATION STYLE
Hartmann, S., Frielingsdorf, S., Caserta, G., & Lenz, O. (2020). A membrane-bound [NiFe]-hydrogenase large subunit precursor whose C-terminal extension is not essential for cofactor incorporation but guarantees optimal maturation. MicrobiologyOpen, 9(6), 1197–1206. https://doi.org/10.1002/mbo3.1029
Mendeley helps you to discover research relevant for your work.