Thermal stability of woolly erionite-K and considerations about the heat-induced behaviour of the erionite group

23Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

The thermal behavior of a woolly erionite-K sample (Lander County, NV, USA), chemical formula (Ca2.03 Na0.73 K2.52 Mg0.26)[Al8.22 Si27.78 O71.80 ]·35.94H2 O, was investigated in the 303–1173 K thermal range by in situ X-ray powder diffraction. Present data suggest a general thermally-induced volume contraction whose magnitude increases as(formula presented) ratio becomes smaller. An inverse correlation between(formula presented) ratio and Tdehydr is observed because higher(formula presented) ratio values are associated to lower dehydration temperatures. A positive dependence exists between(formula presented) ratio and Tbreak. A higher Si content results in a greater thermal stability, in agreement with the general trend observed in zeolites. On the contrary, no correlation has been found between Tbreak and weighted ionic potential (Z/r)wt as suggested by reference data. Heating produces a general depletion of the Ca1, Ca2, Ca3, and K1 sites, which is counterbalanced by an increase of the K2 site scattering, even though the latter is not populated at RT. No “internal ion exchange” mechanism was apparently acting in the present sample differently from other erionite samples analysed in the past. At 303 K approximately 20 e− allocated at the OW H2 O sites might be assigned to (extra-framework) EF cations. Such fraction increases due to their migration from the extra-framework cation sites following the same mechanism reported in reference data.

Cite

CITATION STYLE

APA

Ballirano, P., Pacella, A., Bloise, A., Giordani, M., & Mattioli, M. (2018). Thermal stability of woolly erionite-K and considerations about the heat-induced behaviour of the erionite group. Minerals, 8(1). https://doi.org/10.3390/min8010028

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free