Raising cattle in feedlots is becoming more common in Argentina, but there is little information available about the effects of this practice on soil phosphorus (P) dynamics. In this study, concentrations of water and Bray -1 extractable soil P were quantified in a feedlot (upper and lower slope positions in the feedlot pen), runoff area and pasture during 2006 - 2008. The feedlot showed higher P concentrations in all P forms, soluble reactive P, soluble nonreactive, total soluble P, and Bray-P1 when compared to runoff area and pasture. Most of the total soluble P was soluble reactive P from the soil in the feedlot and the runoff area, while soluble nonreactive P predominated in the pasture. Concentrations of total soluble P were elevated in the feedlot at the soil surface, ranging on average from 158.71 to 245.86 mg?P?kg?1, and had a rapid decrease within the first 20 cm and remained relatively low, about 25.53 - 27.33 mg?P?kg?1. The evidence that total soluble P concentration in the feedlot was significantly (p < 0.05) higher than that registered in the pasture at 20 - 40 and 40 - 60 cm soil depth suggests a potential transfer of P through the soil from the surface. Although the feedlot had a moderate increase of 23.05 to 24.55 mg?P?kg?1 from the background concentration, it may represent a long-term source of increased nutrient loading to groundwater. Soil extractable Bray-1 P in the top 0 - 2.5 cm fluctuated from 659.26 to 45.36 mg?P?kg?1 in the feedlot and pasture, respectively. The relationship between soil P extracted by test and TSP was linear, and correlation coefficient was r2 = 0.95.
CITATION STYLE
Wyngaard, N., Picone, L., Videla, C., Zamuner, E., & Maceira, N. (2011). Impact of Feedlot on Soil Phosphorus Concentration. Journal of Environmental Protection, 02(03), 280–286. https://doi.org/10.4236/jep.2011.23031
Mendeley helps you to discover research relevant for your work.