Analytic gradients are important for efficient calculations of stationary points on potential energy surfaces, for interpreting spectroscopic observations, and for efficient direct dynamics simulations. For excited electronic states, as are involved in UV-Vis spectroscopy and photochemistry, analytic gradients are readily available and often affordable for calculations using a state-averaged complete active space self-consistent-field (SA-CASSCF) wave function. However, in most cases, a post-SA-CASSCF step is necessary for quantitative accuracy, and such calculations are often too expensive if carried out by perturbation theory or configuration interaction. In this work, we present the analytic gradients for multiconfiguration pair-density functional theory based on SA-CASSCF wave functions, which is a more affordable alternative. A test set of molecules has been studied with this method, and the stationary geometries and energetics are compared to values in the literature as obtained by other methods. Excited-state geometries computed with state-averaged pair-density functional theory have similar accuracy to those from complete active space perturbation theory at the second-order.
CITATION STYLE
Scott, T. R., Hermes, M. R., Sand, A. M., Oakley, M. S., Truhlar, D. G., & Gagliardi, L. (2020). Analytic gradients for state-averaged multiconfiguration pair-density functional theory. Journal of Chemical Physics, 153(1). https://doi.org/10.1063/5.0007040
Mendeley helps you to discover research relevant for your work.