Image based Localization under large perspective difference between Sfm and SLAM using split sim(3) optimization

5Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Image based Localization (IbL) uses both Structure from Motion (SfM) and Simultaneous Localization and Mapping (SLAM) data for accurate pose estimation. However, under conditions where there is a large perspective difference between the SfM images and SLAM keyframes, the SfM-SLAM co-visibility graph becomes sparse. As a result, the scale drift can increase especially when using monocular SLAM as part of the IbL framework. The drift rarely gets corrected at loop closure due to its large magnitude. We propose a split affine transformation approach that uses SfM-SLAM information along with Sim(3) optimization to minimize the scale drift. Experiments are performed using an image dataset collected in a campus environment with different trajectories, showing the improvement in scale drift correction with the proposed method. The SLAM data was collected close to plainly textured structures like buildings while SfM images were captured from a larger distance from the building facade which leads to a challenging navigation scenario in the context of IbL. Localizing mobile platforms moving close to buildings is an example of such a case. The paper positively impacts the widespread use of small autonomous robotic platforms, which is to perform an accurate outdoor localization under urban conditions using only a monocular camera.

Cite

CITATION STYLE

APA

Rajamohan, D., Kim, J., Garratt, M., & Pickering, M. (2022). Image based Localization under large perspective difference between Sfm and SLAM using split sim(3) optimization. Autonomous Robots, 46(3), 437–449. https://doi.org/10.1007/s10514-021-10031-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free