In the periodic table, only a few pure metals exhibit lattice or magnetic instabilities associated with Fermi surface nesting, the classical examples being α-U and Cr. Whereas α-U displays a strong Kohn anomaly in the phonon spectrum that ultimately leads to the formation of charge density waves (CDWs), Cr is known for its nesting-induced spin density waves (SDWs). Recently, it has become clear that a pronounced Kohn anomaly and the corresponding softening in the elastic constants is also the key factor that controls structural transformations and mechanical properties in compressed group VB metals-materials with relatively high superconducting critical temperatures. This article reviews the current understanding of the structural and mechanical behavior of these metals under pressure with an introduction to the concept of the Kohn anomaly and how it is related to the important concept of Peierls instability. We review both experimental and theoretical results showing different manifestations of the Kohn anomaly in the transverse acoustic phonon mode TA (x00) in V, Nb, and Ta. Specifically, in V the anomaly triggers a structural transition to a rhombohedral phase, whereas in Nb and Ta it leads to an anomalous reduction in yield strength.
CITATION STYLE
Landa, A., Söderlind, P., Naumov, I. I., Klepeis, J. E., & Vitos, L. (2018). Kohn anomaly and phase stability in group VB transition metals. Computation. MDPI Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/COMPUTATION6020029
Mendeley helps you to discover research relevant for your work.