The Hall effect in metals is too small to have practical applications. Instead, the same effect in semiconductors is the standard for magnetic field sensing. Yet, in semiconducting Hall-sensors, Joule heating severely compromises the linearity range. We here show that a Hall effect can be photo-induced in metals used for bias-free magnetic sensing. The system consists of a transparent metal that forms a Schottky contact to a semiconductor. Light reaching the interface results in the injection of charge from the space charge region. If a magnetic field is applied, a transverse, open-circuit voltage appears at the metal edges that is proportional to the field, as well as light intensity. The system shows sensitivities that are comparable to semiconducting Hall-sensors but no net current flows, therefore its performances are not affected by Joule heating.
CITATION STYLE
Li, D., & Ruotolo, A. (2018). Photo-induced Hall effect in metals. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-22776-x
Mendeley helps you to discover research relevant for your work.