Mitochondrial Morphology, Dynamics, and Function in Human Pressure Overload or Ischemic Heart Disease with Preserved or Reduced Ejection Fraction

103Citations
Citations of this article
81Readers
Mendeley users who have this article in their library.

Abstract

Background: The FOXO3a (forkhead box O3a)-BNIP3 (B-cell lymphoma 2/adenovirus E1B 19kDa interacting protein 3) pathway modulates mitochondrial dynamics and function and contributes to myocardial remodeling in rodent models of heart failure. We sought to investigate the expression of this pathway along with the expression of mitochondrial biogenesis (PGC-1α [peroxisome proliferator-activated receptor-γ coactivator-1α]), dynamics (DRP-1 [dynamin-related protein 1], OPA-1 [optic atrophy 1], and MFN 2 [mitofusin 2]), and oxidative phosphorylation (citrate synthase and electron transport chain complexes) markers and COX IV (cytochrome C oxidase) activity in myocardium from patients with valvular or ischemic heart disease and heart failure with preserved ejection fraction (HFpEF) or heart failure with reduced ejection fraction (HFrEF). Methods and Results: Subepicardial left ventricular biopsies (10×1×1 mm3) were obtained at aortic valve replacement (HFpEFAVR, n=5; and HFrEFAVR, n=4), coronary artery bypass grafting (HFpEFCABG, n=5; and HFrEFCABG, n=5), or left ventricular assist device implantation (HFrEFLVAD, n=4). Subepicardial biopsies from patients with normal left ventricular function (n=2) and from donor hearts (n=3) served as controls (normal). Relative to normal, mitochondrial fragmentation and cristae destruction were evident, and mitochondrial area was decreased in HFpEF; 1.00±0.09 versus 0.71±0.08; P=0.016. These mitochondrial morphological changes were more pronounced in HFrEF (0.54±0.06); P=0.002 HFpEF versus HFrEF. BNIP3 (monomer+dimer) expression was increased in HFpEF (3.99±2.44) and in HFrEF (5.19±1.70) relative to normal; P=0.004 and P<0.001, respectively. However, BNIP3 monomer was increased in HFrEF (4.32±1.43) compared with normal (0.99±0.06) and HFpEF (1.97±0.90); P=0.001 and 0.004, respectively. The HFrEF group uniquely showed increase in DRP-1 expression (1.94±0.38) and decreases in PGC-1α expression (0.61±0.07) and COX IV activity (0.70±0.10) relative to normal; P=0.013, P<0.001, and P<0.001, respectively, with no significant change in electron transport chain complexes expression. Conclusions: These findings in human myocardium confirm studies in rodents where contractile dysfunction is associated with activation of the FOXO3a-BNIP3 pathway and altered mitochondrial dynamics, biogenesis, and function.

Cite

CITATION STYLE

APA

Chaanine, A. H., Joyce, L. D., Stulak, J. M., Maltais, S., Joyce, D. L., Dearani, J. A., … Redfield, M. M. (2019). Mitochondrial Morphology, Dynamics, and Function in Human Pressure Overload or Ischemic Heart Disease with Preserved or Reduced Ejection Fraction. Circulation: Heart Failure, 12(2). https://doi.org/10.1161/CIRCHEARTFAILURE.118.005131

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free