Development of a laser-based heating system for in situ synchrotron-based X-ray tomographic microscopy

67Citations
Citations of this article
104Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Understanding the formation of materials at elevated temperatures is critical for determining their final properties. Synchrotron-based X-ray tomographic microscopy is an ideal technique for studying such processes because high spatial and temporal resolutions are easily achieved and the technique is non-destructive, meaning additional analyses can take place after data collection. To exploit the state-of-the-art capabilities at the tomographic microscopy and coherent radiology experiments (TOMCAT) beamline of the Swiss Light Source, a general-use moderate-to-high-temperature furnace has been developed. Powered by two diode lasers, it provides controlled localized heating, from 673 to 1973 K, to examine many materials systems and their dynamics in real time. The system can also be operated in various thermal modalities. For example, near-isothermal conditions at a given sample location can be achieved with a prescribed time-dependent temperature. This mode is typically used to study isothermal phase transformations; for example, the formation of equiaxed grains in metallic systems or to nucleate and grow bubble foams in silicate melts under conditions that simulate volcanic processes. In another mode, the power of the laser can be fixed and the specimen moved at a constant speed in a user-defined thermal gradient. This is similar to Bridgman solidification, where the thermal gradient and cooling rate control the microstructure formation. This paper details the experimental set-up and provides multiple proofs-of-concept that illustrate the versatility of using this laser-based heating system to explore, in situ, many elevated-temperature phenomena in a variety of materials. © 2012 International Union of Crystallography.

Cite

CITATION STYLE

APA

Fife, J. L., Rappaz, M., Pistone, M., Celcer, T., Mikuljan, G., & Stampanoni, M. (2012). Development of a laser-based heating system for in situ synchrotron-based X-ray tomographic microscopy. Journal of Synchrotron Radiation, 19(3), 352–358. https://doi.org/10.1107/S0909049512003287

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free