Inhibition of TRPV4 remodels single cell polarity and suppresses the metastasis of hepatocellular carcinoma

9Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Hepatocellular carcinoma (HCC) is a malignant tumor, frequently causing both intrahepatic and extrahepatic metastases. The overall prognosis of patients with metastatic HCC is poor. Recently, single-cell (sc) polarity is proved to be an innate feature of some tumor cells in liquid phase, and directly involved in the cell adhesion to blood vessel and tumor metastasis. Here, we characterize the maintained sc polarity of HCC cells in a suspension culture, and investigate its roles and regulatory mechanisms during metastasis. We demonstrate that transient receptor potential vanilloid 4 (TRPV4) is a promoting regulator of sc polarity via activating Ca2+-dependent AMPK/MLC/ERM pathway. This attenuates the adhesion of metastatic HCC cells to vascular endothelial cells. The reduction of cancer metastases can result from TRPV4 inhibition, which not only impacts the migration and invasion of tumor cells, but also prevents the adhesion to vascular endothelial cells. Additionally, we discover a brand-new TRPV4 inhibitor called GL-V9 that modifies the degree of sc polarization and significantly decreases the metastatic capacity of HCC cells. Taken together, our data shows that TRPV4 and calcium signal are significant sc polarity regulators in metastatic HCC, and that the pharmacological intervention that results in HCC cells becoming depolarized suggests a promising treatment for cancer metastasis.

Cite

CITATION STYLE

APA

Liu, J., Guo, Y., Zhang, R., Xu, Y., Luo, C., Wang, R., … Wei, L. (2023). Inhibition of TRPV4 remodels single cell polarity and suppresses the metastasis of hepatocellular carcinoma. Cell Death and Disease, 14(6). https://doi.org/10.1038/s41419-023-05903-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free