Nitrogen (N) is a major nutrient limiting productivity in many ecosystems. The large N demands associated with food crop production are met mainly through the provision of synthetic N fertiliser, leading to economic and ecological costs. Optimising the balance between N supply and demand is key to reducing N losses to the environment. Wheat (Triticum aestivum L.) production provides food for millions of people worldwide and is highly dependent on sufficient N supply. The size of the N sink, i.e. wheat grain (number, size, and protein content) is the main driver of high N requirement. Optimal functioning of temporary sinks, in particular the canopy, can also affect N requirement. N use efficiency (i.e. yield produced per unit of N available) tends to be lower under high N conditions, suggesting that wheat plants are more efficient under low N conditions and that there is an optimal functioning yet unattained under high N conditions. Understanding the determinants of low N requirement in wheat would provide the basis for the selection of genetic material suitable for sustainable cereal production. In this review, we dissect the drivers of N requirement at the plant level along with the temporal dynamics of supply and demand.
CITATION STYLE
Fradgley, N. S., Bentley, A. R., & Swarbreck, S. M. (2021, April 1). Defining the physiological determinants of low nitrogen requirement in wheat. Biochemical Society Transactions. Portland Press Ltd. https://doi.org/10.1042/BST20200282
Mendeley helps you to discover research relevant for your work.