Sodium Hydrosulfide Induces Resistance Against Penicillium expansum in Apples by Regulating Hydrogen Peroxide and Nitric Oxide Activation of Phenylpropanoid Metabolism

10Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

As a multifunctional signaling molecule, hydrogen sulfide (H2S) has been reported to induce plant responses to a variety of abiotic stresses. However, there are no reports on H2S treatment inducing resistance in apples against Penicillium expansum, a biotic factor, and its possible mechanism of action. In this study, fumigating apples with 5 mM sodium hydrosulfide (NaHS), the exogenous donor of H2S, for 12 h reduced the diameter of lesions in fruit colonized by P. expansum. NaHS treatment markedly promoted the synthesis of endogenous H2S, hydrogen peroxide (H2O2), and nitrogen oxide (NO). In vivo NaHS treatment enhanced the activities of phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, p-coumarate:coenzyme A ligase isoenzymes, caffeoyl-CoA-O-methyltransferase, caffeic acid-O-methyltransferase, ferulic acid-5-hydroxylase, cinnamyl-CoA reductase, and cinnamyl-alcohol dehydrogenase. The treatment also facilitated the production of specific phenolic acids, such as cinnamic acid, p-coumaric acid, caffeic acid, ferulic acid, and sinapic acid; total phenolic compounds; p-coumaryl alcohol; coniferyl alcohol; sinapyl alcohol; and lignin. NaHS treatment induced resistance against P. expansum in apples through H2O2- and NO-mediated activation of phenylpropanoid metabolism.

Cite

CITATION STYLE

APA

Deng, H., Wang, B., Liu, Y., Ma, L., Zong, Y., Prusky, D., & Bi, Y. (2021). Sodium Hydrosulfide Induces Resistance Against Penicillium expansum in Apples by Regulating Hydrogen Peroxide and Nitric Oxide Activation of Phenylpropanoid Metabolism. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.720372

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free