During strong rainfall events, shallow landslides and debris avalanches (hillslope debris flows, or open-slope debris flows) are triggered and sometimes lead to considerable damage. Analysis of damage-causing events show that there are fewer landslides in forested areas compared to non-forested areas, which indicates the generally positive influence of forest vegetation on slope stability. However, these effects depend on the condition of the forest stand and quantification of the effects is difficult. Event documentation contributes to a better understanding of the relevant processes. The information obtained is not only important for the preparation of hazard maps, but also provides valuable insight for assessing the hazard protection provided by the forest. Data from the landslide database of the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) were used to evaluate the influence of the forest on slope stability. Currently, the database contains information on 734 landslides. Of these, 661 were included in the evaluation – 356 landslides in non-forested areas and 305 in forested areas. In areas with slope angles up to 38°, more landslides per unit area are observed in non-forested areas than in forested areas. In areas with steeper slope angles a stabilizing effect of the forest is no longer recognizable. Statistical analyses show that landslides in forested areas are smaller than in non-forested areas and are more frequent on steeper slopes. In general, the landslides become smaller with increasing slope. Multivariate analyses indicate a positive influence of the forest and also somewhat smaller landslides in well-developed forests. Negative effects are evident in non-forested areas and in areas with overly dense forests. In addition to illustrating the importance of the forest condition for slope stability, the paper also discusses how the forest condition can be described.
CITATION STYLE
Rickli, C., Graf, F., Bebi, P., Bast, A., Loup, B., & McArdell, B. (2019). Schützt der Wald vor Rutschungen? Hinweise aus der WSL-Rutschungsdatenbank. Schweizerische Zeitschrift Fur Forstwesen, 170(6), 310–317. https://doi.org/10.3188/szf.2019.0310
Mendeley helps you to discover research relevant for your work.