SRFlow: Learning the Super-Resolution Space with Normalizing Flow

162Citations
Citations of this article
468Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Super-resolution is an ill-posed problem, since it allows for multiple predictions for a given low-resolution image. This fundamental fact is largely ignored by state-of-the-art deep learning based approaches. These methods instead train a deterministic mapping using combinations of reconstruction and adversarial losses. In this work, we therefore propose SRFlow: a normalizing flow based super-resolution method capable of learning the conditional distribution of the output given the low-resolution input. Our model is trained in a principled manner using a single loss, namely the negative log-likelihood. SRFlow therefore directly accounts for the ill-posed nature of the problem, and learns to predict diverse photo-realistic high-resolution images. Moreover, we utilize the strong image posterior learned by SRFlow to design flexible image manipulation techniques, capable of enhancing super-resolved images by, e.g., transferring content from other images. We perform extensive experiments on faces, as well as on super-resolution in general. SRFlow outperforms state-of-the-art GAN-based approaches in terms of both PSNR and perceptual quality metrics, while allowing for diversity through the exploration of the space of super-resolved solutions. Code: git.io/Jfpyu.

Cite

CITATION STYLE

APA

Lugmayr, A., Danelljan, M., Van Gool, L., & Timofte, R. (2020). SRFlow: Learning the Super-Resolution Space with Normalizing Flow. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 12350 LNCS, pp. 715–732). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-58558-7_42

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free