Mathematical modeling of human ventricular action potentials

0Citations
Citations of this article
1Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Modeling the dynamics of wave propagation in human ventricular tissue requires the use of specific ionic models, capable not only of reproducing key characteristics at single cell level, such as rate dependencies of human action potential duration, but also other tissue-level properties, such as rate dependence of conduction velocity, wave curvature, minimum rate for conduction block, or action potential morphologies. To date, only three different ionic models have been developed to reproduce human ventricular cell dynamics. The Priebe model, the Ten Tusscher model and the Iyer-Mazhari-Winslow model. © 2009 Springer.

Cite

CITATION STYLE

APA

Nicu, A. I., Curta, C. S., Cretu, M., Ciupa, R. V., & Voinicu, M. (2009). Mathematical modeling of human ventricular action potentials. In IFMBE Proceedings (Vol. 26, pp. 315–318). https://doi.org/10.1007/978-3-642-04292-8_70

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free