Although the actual use of delivery robots like UGVs and UAVs has not yet been generalized, they are also used for additional purposes like fun and enjoyment in some limited areas such as tourist destinations. In this study, an optimal algorithm is proposed that operates a delivery service through an integrated system of UGVs and UAVs at certain tourism destination. It is assumed that both UGVs and UAVs or only one means could be used depending on the type of goods delivered and the topographical characteristics. The mathematical model-based optimization technique is applied to generate the delivery service route of both UGVs and UAVs that can maximize total customer satisfaction. The developed mathematical model is solved through CPLEX and genetic algorithm, and the results are compared by dividing into case 1 in which UAVs move freely and case 2 in which UAVs can move only in a limited path since there is a risk of accidental falling when moving. As a result, when UAVs move freely, the total customer satisfaction is higher while the total complete time increases. However, it is suggested that an appropriate operation policy should be determined considering the risk of accidental falling.
CITATION STYLE
Ko, Y. K., Park, J. H., & Ko, Y. D. (2022). A Development of Optimal Algorithm for Integrated Operation of UGVs and UAVs for Goods Delivery at Tourist Destinations. Applied Sciences (Switzerland), 12(20). https://doi.org/10.3390/app122010396
Mendeley helps you to discover research relevant for your work.