Role of SR protein modular domains in alternative splicing specificity in vivo

41Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The SR proteins constitute a family of nuclear phosphoproteins which are required for constitutive splicing and also influence alternative splicing regulation. They have a modular structure consisting of one or two RNA recognition motifs (RRMs) and a C-terminal domain, rich in arginine and serine residues. The functional role of the different domains of SR proteins in constitutive splicing activity has been extensively studied in vitro; however, their contribution to alternative splicing specificity in vivo has not been clearly established. We sought to address how the modular domains of SR proteins contribute to alternative splicing specificity. The activity of a series of chimeric proteins consisting of domain swaps between different SR proteins showed that splice site selection is determined by the nature of the RRMs and that RRM2 of SF2/ASF has a dominant role and can confer specificity to a heterologous protein. In contrast, the identity of the RS domain is not important, as the RS domains are functionally interchangeable. The contribution of the RRMs to alternative splicing specificity in vivo suggests that sequence-specific RNA binding by SR proteins is required for this activity.

Cite

CITATION STYLE

APA

Van Der Houven Van Oordt, W., Newton, K., Screaton, G. R., & Cáceres, J. F. (2000). Role of SR protein modular domains in alternative splicing specificity in vivo. Nucleic Acids Research, 28(24), 4822–4831. https://doi.org/10.1093/nar/28.24.4822

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free