The Gardner Problem on the Lock-In Range of Second-Order Type 2 Phase-Locked Loops

N/ACitations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Phase-locked loops (PLLs) are nonlinear automatic control circuits widely used in telecommunications, computer architecture, gyroscopes, and other applications. One of the key problems of nonlinear analysis of PLL systems has been stated by Floyd M. Gardner as being 'to define exactly any unique lock-in frequency.' The lock-in range concept describes the ability of PLLs to reacquire a locked state without cycle slipping and its calculation requires nonlinear analysis. This work analyzes a second-order type 2 PLL with a sinusoidal phase detector characteristic. Using the qualitative theory of dynamical systems and classical methods of control theory, we provide stability analysis and suggest analytical lower and upper estimates of the lock-in range based on the exact lock-in range formula for a second-order type 2 PLL with a triangular phase detector characteristic. Applying phase plane analysis, an asymptotic formula for the lock-in range, which refines the existing formula is obtained. The analytical formulas are compared with computer simulation and engineering estimates of the lock-in range. The comparison shows that engineering estimates can lead to cycle slipping in the corresponding PLL model and cannot provide a reliable solution for the Gardner problem, whereas the lower estimate presented in this article guarantees frequency reacquisition without cycle slipping for all parameters, which provides a solution to the Gardner problem.

Cite

CITATION STYLE

APA

Kuznetsov, N. V., Lobachev, M. Y., Yuldashev, M. V., Yuldashev, R. V., & Tavazoei, M. S. (2023). The Gardner Problem on the Lock-In Range of Second-Order Type 2 Phase-Locked Loops. IEEE Transactions on Automatic Control, 68(12), 7436–7450. https://doi.org/10.1109/TAC.2023.3277896

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free