Small extracellular vesicles (sEV) in TNBC patients’ plasma promote T cell dysfunction and tumor progression. Here we show that tumor cell-derived exosomes (TEX) carrying surface PDL-1, PD-1, Fas, FasL, TRAIL, CTLA-4 and TGF-β1 induce apoptosis of CD8+T and CD4+T cells but spare B and NK cells. Inhibitors blocking TEX-induce receptor/ligand signals and TEX pretreatments with proteinase K or heat fail to prevent T cell apoptosis. Cytochalasin D, Dynosore or Pit Stop 2, partly inhibit TEX uptake but do not prevent T cell apoptosis. TEX entry into T cells induces cytochrome C and Smac release from mitochondria and caspase-3 and PARP cleavage in the cytosol. Expression of survival proteins is reduced in T cells undergoing apoptosis. Independently of external death receptor signaling, TEX entry into T cells induces mitochondrial stress, initiating relentless intrinsic apoptosis, which is responsible for death of activated T cells in the tumor-bearing hosts. The abundance of TEX in cancer plasma represents a danger for adoptively transferred T cells, limiting their therapeutic potential.
CITATION STYLE
Mondal, S. K., Haas, D., Han, J., & Whiteside, T. L. (2023). Small EV in plasma of triple negative breast cancer patients induce intrinsic apoptosis in activated T cells. Communications Biology, 6(1). https://doi.org/10.1038/s42003-023-05169-3
Mendeley helps you to discover research relevant for your work.