Segmentation of multiple knee bones from CT for orthopedic knee surgery planning

25Citations
Citations of this article
64Readers
Mendeley users who have this article in their library.

Abstract

Patient-specific orthopedic knee surgery planning requires precisely segmenting from 3D CT images multiple knee bones, namely femur, tibia, fibula, and patella, around the knee joint with severe pathologies. In this work, we propose a fully automated, highly precise, and computationally efficient segmentation approach for multiple bones. First, each bone is initially segmented using a model-based marginal space learning framework for pose estimation followed by non-rigid boundary deformation. To recover shape details, we then refine the bone segmentation using graph cut that incorporates the shape priors derived from the initial segmentation. Finally we remove overlap between neighboring bones using multi-layer graph partition. In experiments, we achieve simultaneous segmentation of femur, tibia, patella, and fibula with an overall accuracy of less than 1mm surface-to-surface error in less than 90s on hundreds of 3D CT scans with pathological knee joints. © 2014 Springer International Publishing.

Cite

CITATION STYLE

APA

Wu, D., Sofka, M., Birkbeck, N., & Zhou, S. K. (2014). Segmentation of multiple knee bones from CT for orthopedic knee surgery planning. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8673 LNCS, pp. 372–380). Springer Verlag. https://doi.org/10.1007/978-3-319-10404-1_47

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free