Micromechanical properties and structural characterization of modern inarticulated brachiopod shells

22Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We investigated micromechanical properties and ultrastructure of the shells of the modern brachiopod species Lingula anatina, Discinisca laevis, and Discradisca stella with scanning electron microscopy (SEM, EDX), transmission electron microscopy (TEM) and Vickers microhardness indentation analyses. The shells are composed of two distinct layers, an outer primary layer and an inner secondary layer. Except for the primary layer in Lingula anatina, which is composed entirely of organic matter, all other shell layers are laminated organic/inorganic composites. The organic matter is built of chitin fibers, which provide the matrix for the incorporation of calcium phosphate. Amorphous calcium phosphate in the outer, primary layer and crystalline apatito is deposited into the inner, secondary layer of the shell. Apatite crystallite sizes in the umbonal region of the shell are about 50 × 50 nm, while within the valves crystallite sizes are significantly smaller, averanging 10 × 25 nm. There is great variation in hardness values between shell layers and between the investigated brachiopod species. The microhardness of the investigated shells is significantly lower than that of inorganic hydroxyapatite. This is caused by the predominantly organic material component that in these shells is either developed as purely organic layers or as an organic fibrous matrix reinforced by crystallites. Our results show that this particular fiber composite material is very efficient for the protection and the support of the soft animal tissue. It lowers the probability of crack formation and effectively impedes crack propagation perpendicular to the shell by crack-deviation mechanisms. The high degree of mechanical stability and toughness is achieved by two design features. First, there is the fiber composite material which overcomes some detrimental and enhances some advantageous properties of the single constituents, that is the softess and flexibility of chitin and the hardness and brittleness of apatite. Second, there is a hierarchical structuring from the nanometer to a micrometer level. We could identify at least seven levels of hierarchy within the shells. Copyright 2007 by the American Geophysical Union.

References Powered by Scopus

<sup>87</sup>Sr/<sup>86</sup>Sr, δ<sup>13</sup>C and δ<sup>18</sup>O evolution of Phanerozoic seawater

2599Citations
N/AReaders
Get full text

Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures

1737Citations
N/AReaders
Get full text

Materials science: Skeleton of euplectella sp.: Structural hierarchy from the nanoscale to the macroscale

1013Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Nano-FTIR chemical mapping of minerals in biological materials

116Citations
N/AReaders
Get full text

Mechanical properties of modern calcite- (Mergerlia truncata) and phosphate-shelled brachiopods (Discradisca stella and Lingula anatina) determined by nanoindentation

64Citations
N/AReaders
Get full text

Interdigitating biocalcite dendrites form a 3-D jigsaw structure in brachiopod shells

63Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Merkel, C., Griesshaber, E., Kelm, K., Neuser, R., Jordan, G., Logan, A., … Schmahl, W. W. (2007). Micromechanical properties and structural characterization of modern inarticulated brachiopod shells. Journal of Geophysical Research: Biogeosciences, 112(2). https://doi.org/10.1029/2006JG000253

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 11

46%

Researcher 7

29%

Professor / Associate Prof. 6

25%

Readers' Discipline

Tooltip

Earth and Planetary Sciences 8

40%

Chemistry 5

25%

Agricultural and Biological Sciences 4

20%

Materials Science 3

15%

Save time finding and organizing research with Mendeley

Sign up for free