Derivation of klein-gordon equation from Maxwell's equations and study of relativistic time-domain waveguide modes

37Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

An initial-boundary value problem for the system of Maxwell's equations with time derivative is formulated and solved rigorously for transient modes in a hollow waveguide. It is supposed that the latter has perfectly conducting surface. Cross section, S, is bounded by a closed singly-connected contour of arbitrary but smooth enough shape. Hence, the TE and TM modes are under study. Every modal field is a product of a vector function of transverse coordinates and a scalar amplitude dependent on time, t, and axial coordinate, z. It has been established that the study comes down to, eventually, solving two autonomous problems: i) A modal basis problem. Final result of this step is definition of complete (in Hilbert space, L2 (S)) set of functions dependent on transverse coordinates which originates a basis. ii) A modal amplitude problem. The amplitudes are generated by the solutions to Klein-Gordon equation (KGE), derived from Maxwell's equations directly, with t and z as independent variables. The solutions to KGE are invariant under relativistic Lorentz transforms and subjected to the causality principle. Special attention is paid to various ways that lead to analytical solutions to KGE. As an example, one case (among eleven others) is considered in detail. The modal amplitudes are found out explicitly and expressed via products of Airy functions with arguments dependent on t and z.

Cite

CITATION STYLE

APA

Tretyakov, O. A., & Akgun, O. (2010). Derivation of klein-gordon equation from Maxwell’s equations and study of relativistic time-domain waveguide modes. Progress in Electromagnetics Research, 105, 171–191. https://doi.org/10.2528/PIER10042702

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free