Implementation of Convolutional Neural Network (CNN) for Image Classification of Leaf Disease In Mango Plants Using Deep Learning Approach

  • Rinanda P
  • Aini D
  • Pertiwi T
  • et al.
N/ACitations
Citations of this article
35Readers
Mendeley users who have this article in their library.

Abstract

Plant diseases pose a serious threat to a country's economy and food security. One way to identify diseases in plants is through the visible features on their leaves. Farmers need to conduct an active examination of the condition of the leaves of plants to eradicate this disease. In this case, automatic recognition and classification of diseases of leaf crops is required in order to obtain an accurate identification. Digital image processing technology can be used to solve this problem. One effective approach is the Convolutional Neural Network (CNN). The trial image used a dataset consisting of 4000 images of mango leaf disease, namely Anthracnose, Bacterial Canker, Cutting Weevil, Die Back, Gall Midge, Powdery Mildew, and Sooty Mould. This study aims to compare the accuracy of CNN, VGG16 and InceptionV3.  Architectural modeling uses these drawings to train and test models in recognizing and classifying mango leaf diseases. The results of modeling trials in the three scenarios were most optimally obtained by VGG16 with an accuracy of 96.87%, then InceptionV3 with an acquisition of 96.50% and CNN by 81%.

Cite

CITATION STYLE

APA

Rinanda, P. D., Aini, D. N., Pertiwi, T. A., Suryani, S., & Prakash, A. J. (2024). Implementation of Convolutional Neural Network (CNN) for Image Classification of Leaf Disease In Mango Plants Using Deep Learning Approach. Public Research Journal of Engineering, Data Technology and Computer Science, 1(2), 56–61. https://doi.org/10.57152/predatecs.v1i2.872

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free