Mounting evidence has shown that naturally occurring CD8+CD122+ T cells are regulatory T cells (Tregs) that suppress both autoimmunity and alloimmunity. We have previously shown that CD8+CD122+PD-1+ Tregs not only suppress allograft rejection, but also are more potent in suppression than conventional CD4+CD25+ Tregs. However, the mechanisms underlying their suppression of alloimmunity are not well understood. In an adoptive T-cell transfer model of mice lacking lymphocytes, we found that suppression of skin allograft rejection by CD8+CD122+PD-1+ Tregs was mostly dependent on their expression of Fas ligand as either lacking Fas ligand or blocking it with antibodies largely abolished their suppression of allograft rejection mediated by transferred T cells. Their suppression was also mostly reversed when effector T cells lacked Fas receptor. Indeed, these FasL+ Tregs induced T cell apoptosis in vitro in a Fas/FasL-dependent manner. However, their suppression of T cell proliferation in vitro was dependent on IL-10, but not FasL expression. Furthermore, adoptive transfer of CD8+CD122+PD-1+ Tregs significantly extended allograft survival even in wild-type mice if Tregs lacked Fas receptor or if recipients received recombinant IL-15, as these two measures synergistically expanded adoptively-transferred Tregs in recipients. Thus, this study may have important implications for Treg therapies in clinical transplantation.
CITATION STYLE
Liu, H., Wang, Y., Zeng, Q., Zeng, Y. Q., Liang, C. L., Qiu, F., … Dai, Z. (2017). Suppression of allograft rejection by CD8+CD122+PD-1+ Tregs is dictated by their Fas ligand-initiated killing of effector T cells versus Fas-mediated own apoptosis. Oncotarget, 8(15), 24187–24195. https://doi.org/10.18632/oncotarget.15551
Mendeley helps you to discover research relevant for your work.