Flow of long chain hydrocarbons through carbon nanotubes (CNTs)

4Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The pressure-driven flow of long-chain hydrocarbons in nanosized pores is important in energy, environmental, biological, and pharmaceutical applications. This paper examines the flow of hexane, heptane, and decane in carbon nanotubes (CNTs) of pore diameters 1–8 nm using molecular dynamic simulations. Enhancement of water flow in CNTs in comparison to rates predicted by continuum models has been well established in the literature. Our work was intended to observe if molecular dynamic simulations of hydrocarbon flow in CNTs produced similar enhancements. We used the OPLS-AA force field to simulate the hydrocarbons and the CNTs. Our simulations predicted the bulk densities of the hydrocarbons to be within 3% of the literature values. Molecular sizes and shapes of the hydrocarbon molecules compared to the pore size create interesting density patterns for smaller sized CNTs. We observed moderate flow enhancements for all the hydrocarbons (1–100) flowing through small-sized CNTs. For very small CNTs the larger hydrocarbons were forced to flow in a cork-screw fashion. As a result of this flow orientation, the larger molecules flowed as effectively (similar enhancements) as the smaller hydrocarbons.

Cite

CITATION STYLE

APA

Asai, P., Panja, P., Velasco, R., & Deo, M. (2021). Flow of long chain hydrocarbons through carbon nanotubes (CNTs). Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-90213-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free