Insufficient information on the novel coronavirus (COVID-19) has made it more difficult for the world to tackle its continuous implosion. Meteorological and environmental factors, in both laboratory and epidemiological studies, have been reported to affect the survival and transmission of the virus. In this study, the possible effects of location-specific meteorological parameters in a tropical climate on new daily COVID-19 infection (NDI) are investigated in Kuala Lumpur from 14 March 2020 to 31 August 2020. A generalized additive model (GAM) was imposed on ambient temperature (T) and absolute humidity (AH) to explore their nonlinear relationship with NDI. Piecewise linear regression was then used to further discern the relationships below and above the threshold values of both T and AH. The relationship between T and NDI, which was linear and statistically significant for T > 29.7°C, showed that each unit rise in temperature increases NDI by about 3.210% (CI: 1.372-7.976). AH had a more pronounced linear association with NDI for AH ≤ 22.6 g/m3 but tended to flatten the exposure-response curve above this value. A 1 g/m3 increase in AH increases NDI by 3.807% (CI: 2.064-5.732). Generally, the results indicated a positive association between T and NDI, particularly above 29.7°C, while the association with AH showed a stronger positive relationship below 22.6 g/m3. The implication of this is that COVID-19 could not be suppressed on account of warmer weather as such public health interventions remain imperative.
CITATION STYLE
Makama, E. K., & Lim, H. S. (2021). Effects of Location-Specific Meteorological Factors on COVID-19 Daily Infection in a Tropical Climate: A Case of Kuala Lumpur, Malaysia. Advances in Meteorology, 2021. https://doi.org/10.1155/2021/6675943
Mendeley helps you to discover research relevant for your work.