Synchronous observations of the isotopic composition of water vapor and precipitation for 24 rain events were performed. Rain events driven by low-level jets exhibited similar isotopic changes in precipitation and water vapor. The vertical activity of water vapor in convection causes the isotopic variation in precipitation to be opposite to that of water vapor. Isotopic changes of precipitation in low-pressure systems were partially synchronized with that of water vapor at high but not low water vapor concentrations. Changes in microphysical meteorological properties in stratiform precipitation give rise to different patterns of isotopic changes in water. The re-evaporation of raindrops can be determined by the enrichment ratio of heavy isotopes in the water under the cloud base, which is closely related to the raindrop radius. Stratiform precipitation, with small raindrop sizes, was prone to kinetic fractionation under the cloud base. The raindrop radius of low-level jets was small, favoring exchange with surrounding air and re-evaporation. The moist air mass in convection facilitates isotopic exchange of raindrops with surrounding water vapor, leading to low enrichment ratios. The lowest enrichment ratios in low-pressure systems were due to environments characterized by large-scale water vapor convergence.
CITATION STYLE
Li, X., Tang, C., & Cui, J. (2021). Intra-event isotopic changes in water vapor and precipitation in South China. Water (Switzerland), 13(7). https://doi.org/10.3390/w13070940
Mendeley helps you to discover research relevant for your work.